
Lab 11: Creating Internet-Aware Applications
For background information on this lab, click each one of these topics:

Objectives
By the end of this lab, you will be able to:

 Build a Web browser client by using the WebBrowser control.
 Build a component that provides downloading capabilities.
 Create the client and server code for a peer-to-peer chat application.

Prerequisites
Before starting this lab, you should be familiar with the following concepts:

 Socket technology and the Winsock control
 The File Transfer Protocol (FTP)
 the Hypertext Transfer Protocol (HTP)
 The contents of this chapter

Lab setup
To complete this lab, you will need the following:

 Visual Basic 5.0 or later

The exercises in this lab use Personal Web Server, however, they will also work with any Web
server.

To see a demonstration of the completed lab solution, click this icon.

Estimated time to complete this lab: 45 minutes

Note There are project and solution files associated with each lab. If you installed the labs
during Setup, these files are in the folder <Install Folder>\Labs on your hard disk. If you did not
install the labs during Setup, you can find them in the \Labs folder of the Mastering Microsoft
Visual Basic 5 CD-ROM.

Exercises
The following exercises provide practice working with the concepts and techniques covered in
Chapter 11.

Exercise 1: Building the Browser Application
In this exercise, you will use the WebBrowser control to create a browser that is capable of
viewing files, HTML pages, and ActiveX documents.

Exercise 2: Building the FTP Download Component
In this exercise, you will build a reusable component that provides FTP downloading services for
a client.

Exercise 3: Adding Browser Capabilities to the Component
In this exercise, you will extend the FTPService component in the previous exercise to provide
users with the ability to view files on a remote computer and select one for downloading.

Exercise 4: Coding a Chat Session Application
In this exercise, you will create an application that uses the Winsock control to conduct a peer-
to-peer chat session with another application on the same or remote computer.

Exercise 1: Building the Browser Application
In this exercise, you will use the WebBrowser control to create a browser that is capable of
viewing files, HTML pages and ActiveX documents.

You begin by starting a new project, and then creating a toolbar for the browser. You will also
create a status bar and add Web browser navigation capabilities. Finally, you will implement a
progress bar within the status bar.

Creating the User Interface
In this first procedure, you will create the initial project and set up the user interface
components, as shown in the following illustration.

 Create the initial project
1. Create a new Standard EXE.
2. In the main form, add Toolbar, Statusbar, and ProgressBar controls. These controls are all

located in the Microsoft Windows Common Controls 5.0 component.
3. For the ProgressBar control, set the Visible property to False.
4. Add a WebBrowser control to the main form. This control is located in the Microsoft Internet

Controls component.
5. Save the project in the folder <install folder>\Lab11.

 Design the toolbar
1. Add a drop-down combo box to the toolbar that enables users to type in new URLs and store

past URLs. Add an appropriate label for the combo box.
2. To the right of the combo box, add five command buttons to the toolbar. Create the buttons

as a control array, providing each one with the same name and incrementing the Index
property.

Command buttons added through the property page for the toolbar are always added starting at
the left edge of the toolbar. This will interfere with the combo box you have just added. For this
reason, add the command buttons from the command toolbox.

Initialize the controls based on the information in the following table.

Name Picture Purpose

cmdStop Trffc14.ico Stop an asynchronous Web Browser
operation.

cmdGoBack Trffc04.ico Go to the prior page as displayed in
the Web Browser

cmdGoForward Trffc02.ico Go to the next page as displayed in
the Web Browser

cmdHome House.ico Go to the home page, as specified in
the registry.

cmdSearch Binoculr.ico Go to the Web search page, as
specified in the Registry.

 Design the status bar
1. Set the AutoSize property of the first panel to sbrContent. This will create the size of the

panel based on the size of the text it contains, but with the minimum width specified by the
MinimumWidth property. This panel will be the location of the ProgressBar control when it
is displayed.

2. Insert a second panel to display the title of the current page displayed in the Web Browser.
Set its AutoSize property to sbrSpring so that its size is based on the width of the status
bar.

Coding the Application
In the next procedure, you will add the underlying code for the application. You will also learn
how to use a status bar panel to display a progress bar, and how to bring other application
windows into the foreground.

Note The following instructions do not specify the addition of error handlers. However, many of
the operations performed by this application may fail, such has navigating to an invalid URL. It
is strongly suggested that you provide error handling throughout this application.

 Initialize the WebBrowser control
1. Implement the Start Page code.

a. Declare a form-level string variable to hold the name of the Start Page.
b. In the Form_Load event, use the GetSetting statement to extract the default Start Page

from the registry. Use the parameter values listed in the following table.

Parameter Value

AppName IAwareApp
Section Startup
Key StartPage
Default HomePage.HTML in the application's directory (see

App.Path).

c. Use the Navigate method of the WebBrowser control to display the Start Page.
d. In the Form_Unload event, use the SaveSetting statement to save the name of the Start

Page to the registry.
2. Size the WebBrowser control based on the size of the form.

a. Add a handler for the Form_Resize event.
b. Size the WebBrowser control so that it fills the display area of the form, between the

Toolbar control and the StatusBar control.
It is not necessary to size the form in the Form_Load event because the Form_Resize event
occurs just before the form is initially displayed.

 Add WebBrowser navigation
1. Implement the combo box for the URL.

a. Add a handler for the combo box KeyPress event.
b. If the KeyPress value is a carriage return (ASCII value 13) and the text in the Edit field of

the combo box is not a null string, use the Navigate method of the WebBrowser control
to display the URL specified, and use the AddItem method to add the URL to the combo
box list.

c. Add a handler for the combo box Click event.
d. In the handler, navigate the WebBrowser control to the URL selected in the combo box.

2. Implement the navigation command buttons.
a. In the Click event of the Stop button on the toolbar, stop the current operation and return

to the prior URL if the Web Browser is busy (refer to the Busy property).
b. In the Click event of the Back button, invoke the GoBack method of the Web Browser.

Repeat this step for the Forward, Home, and Search buttons by using their associated
methods.

 Implement the ProgressBar control
1. Make the Statusbar control the parent of the ProgressBar control. This will enable the

ProgressBar control to be displayed on top of the StatusBar control, and to be located
based on the StatusBar control coordinates.
a. Add a standard module to the project.
b. In the standard module, add a declaration statement for the SetParent API. Because this

is a Win32 function, you can use the API Text Viewer that ships with Visual Basic to add
the correct Declare statement.

c. In the Form_Load event, set the parent of the ProgressBar control window to the
StatusBar control window by using the SetParent API.

2. Display and update the ProgressBar control during a download operation.
a. Add a handler for the DownloadBegin event of the WebBrowser control.
b. Initialize the ProgressBar control to have a minimum value of 0, a maximum value of 100,

and a starting value of 0.
c. Move the ProgressBar control to fill the first panel of the StatusBar control, and set its

Visible property to True.
3. Hide the ProgressBar control when downloading is complete.

a. Add a handler for the DownloadComplete event of the WebBrowser control.
b. Set the Visible property of the ProgressBar control to False.

4. Update the ProgressBar control during the download operation.
a. Add a handler for the ProgressChange event of the WebBrowser control.
b. If the Progress parameter is not –1, and the ProgressMax parameter is not 0, set the

Value property of the ProgressBar control to percentage that the operation is complete.
Percent complete is calculated as Progress times 100, divided by MaxProgress.

 Use InternetExplorer to extend context-sensitive Help
1. Add a menu commands to the form, as listed in the following table.

File Options Help

Open Set Start Page MS on the Web >
 (separator) Home Page
Exit Developer Only

 Visual Basic
About

2. Enable Internet Explorer to display the MS on the Web sites.
a. Add a private form-level object variable of type InternetExplorer.
b. Add a handler for the MS on the Web menu commands.
c. In the handler, check to see if an instance of the InternetExplorer control is running. If

not, create a new instance, as shown in the following code:
If ie is Nothing then

Set ie = New InternetExplorer
End If

d. Use the Navigate method of InternetExplorer control to display an appropriate Web site
based on the following table.

Site URL

Home Page http://www.microsoft.com
Developers Only http://www.microsoft.com/devonly
Visual Basic http://www.microsoft.com/VBasic

e. Set the Visible property of the InternetExplorer control to True.
3. Make the InternetExplorer control the topmost application.

a. In the standard module, add a declaration for the Win32 API SetForegroundWindow
function.

b. After the statement that makes the InternetExplorer control visible, add a call to
SetForegroundWindow.

 Finish coding the application
1. Implement the Set Start Page menu command to enable users to specify a different Start

Page.
2. Implement the Open menu command that displays a dialog box to let users specify and

navigate to a URL.
3. Implement the Exit menu command by unloading the form.
Do not use the End statement in the event procedure of the Exit menu item because the
Unload event will not occur and the reference to the startup page will not be saved to the
registry.

Exercise 2: Building the FTP Download Component
In this exercise, you will build a reusable component that provides FTP downloading services for
a client.

You will create a class module that interacts with clients, and a form that provides users with a
visual indication of the download progress and the ability to cancel anytime before completion.

You will also use the Internet Transfer control to work with FTP, and generate events from
forms.

The following illustration shows the architecture of the completed component.

 Create project
1. Create a new ActiveX DLL project.

a. Set the project name to FTPDownload.
b. Set the class name to clsDownload.
c. Set the instance of the class to MultiUse.

2. Add the form.
a. Add a new form to the project.
b. Set the name of the form to frmFTPCopy.
c. Set the Caption property to FTP Download.

 Implement the frmFTPCopy form
1. Add the user interface.

a. Add a label that displays the source and destination.
b. Add a Cancel command button.
c. Add an Internet Transfer control to the form (the location is not important).

2. Declare events for the form.
a. Declare a CopyCancelled event.
b. Declare a CopyCompleted event.
c. Declare a CopyError event with two parameters, an integer for an error code and a string

for an error description.
3. Implement a public entry point.

a. Create a public function named BeginCopy. This function should take three parameters:
the URL of the FTP service, and the file names of the source and the destination.

b. Make the form visible.
c. Use the Execute method of the Internet Transfer control to begin an FTP Get operation,

specifying the source and destination.
The following code shows the form of the statement:
sOperation = "" & " Get " & Source & " " & Destination & ""
INet1.Execute URL, sOperation

d. Following the Execute call, enter a loop that calls DoEvents until the StillExecuting
property of the Internet Transfer control returns a value of False.

4. Implement the StateChanged event handler.
a. Add the StateChanged event handler
b. If the state the state of the copy is icResponseCompleted, unload the form and raise the

CopyCompleted event.
c. If the state is icError, unload the form and raise the CopyError event. Pass the

ResponseCode and ResponseInfo property values of the Internet Transfer control as
the error code and error description parameters, respectively.

5. Implement the Cancel button.
a. Add a handler for the Click event of the Cancel command button.
b. Call the Cancel method for the Internet Transfer control.
c. Unload the form.
d. Raise the CopyCancelled event.

 Implement the clsDownload class module
1. Create an instance of the frmFTPCopy form.

a. Declare an object variable of type frmFTPCopy that allows the clsDownload class to
receive events. (Refer to the WithEvents declarator.)

b. In the Initialize event handler for the class, create a new instance of the frmFTPCopy form.
c. Declare the three public events CopyCompleted, CopyCancelled, and CopyError to match

those of the frmFTPCopy form, using copy and paste.
d. Implement a handler for each of the form events, and raise the associated class event

back to the client, as shown in the following code:
Private Sub frmFTPCopy_CopyCompleted()

RaiseEvent CopyCompleted
End Sub

2. Add the client interface.
a. Add a public function named Copy, which takes three string parameters (URL, Source,

and Destination) and returns a Boolean value that indicates success or failure.
b. Validate that the URL begins with the prefix FTP://. If not, fix the URL appropriately.
c. Call the BeginCopy function in the form, passing the appropriate parameters.

Build and Test the Component
In the next procedure, you will build the FTPDownload component, and update the client so that
it can use the FTP service.

There are also two optional activities that you can do: You can add a function that validates the
destination folder, and you can provide users with a progress indicator during the download.

 Build the FTPDownload.dll component
1. Create the DLL component by clicking the Make DLL command on the File menu.
2. Run the component so that it can be debugged. There is no visible representation of the

component until it is called by the client.

 Update the client to use the FTPDownload service
1. Provide the download user interface.

a. Load the client application created in the first exercise into a separate instance of Visual
Basic.

b. Add a reference to the FTPDownload component. Be sure that the reference is to the
running instance of the component (the .vbp file), rather than to the DLL.

c. Add a new form to the project named frmDownload.
d. In the form, add labels and text boxes for users to provide the URL, and the file names for

the source and destination.
e. Add the Copy and Cancel command buttons.

2. Implement the client's FTPDownload capability.
a. In the code of the new form, declare a form-level object variable of type FTPDownload

that can receive the component's events.
b. In the form's Load event, create an instance of the FTPDownload component.
c. Implement a handler for the Copy command button's Click event that invokes the Copy

method of the FTPDownload object.
d. Implement a handler for the Cancel command button's Click event that causes the form to

be unloaded.
e. Add a subroutine, EnableCopyButton, that enables the Copy command button only if all

three text boxes contain user-entered text.
f. Add a handler for the Change event of the URL text box that calls the EnableCopyButton

subroutine. Repeat this step for the source and destination text boxes.
g. Add an event procedure for the component's CopyCompleted event that displays a

message box informing users about the outcome of the FTP download operation. Repeat
this step for the CopyCancelled and CopyError events.

h. On the File menu of the main form, add a Transfer... command.
i. Add a handler for the Transfer menu item that shows the FTPDownload form.

3. Build and test the FTPDownload capability.

Extending the Component (Optional)
This is the first of two optional activities that have you add functionality to your component. First,
add a function that validates the destination folder. Second, add a progress indicator to the
service.

 Add a function that validates the destination directory
Two attributes of the destination should be addressed. In this section, you will ensure that the
destination directory exists and prevent copying over a destination file should it already exist.
1. Implement the destination validation function in the clsDownload class module.

a. Add the private function ValidDestinationPath that takes a destination string as a
parameter and returns True, if the destination is a valid path, or False if it is not valid.

b. Extract the path of the destination string.
c. Using the Dir$ function, test whether or not the path is valid, and return the appropriate

value.
2. Implement the ReplaceFile function. In this function, test for the existence of the destination

file. If it already exists, display a message to users that asks whether or not they want to
replace the file. If they answer Yes, rename the exiting file with a .bak extension.

3. In the Copy function, invoke the ReplaceFile and ValidDestinationPath functions before
calling the BeginCopy function of the frmFTPCopy form.

4. Update the CopyCancelled and CopyError events to restore the .bak file to its original name,
if one was created.

 Provide user feedback during download
One problem with the download service is that users get no feedback that the operation is still
underway. In this section, you will implement the flying icon similar to that displayed when
copying files with Windows Explorer.
1. Install the GlobalTimer component located in the folder\Labs\Lab11\FTP\GTimer.

2. Update the user interface.
a. Scale the frmFTPCopy form of the component to a width and height of 100 units.
b. Place the icon Files02b.ico in an image control at position (10, 50).
c. Place the icon Openfold.ico in an image control at position (80, 20).
d. Place the icon Drag1pg.ico in an image control anywhere on the form.

3. Implement the flying icon.
a. Although the Internet Transfer control provides notification on the download process

through the State_Changed event, it is not consistent enough to display the flying icon. For
this reason, use the Timer component included with the Mastering Microsoft Visual Basic
5.0 CD-ROM, and add a reference to the GlobalTimer component.

b. Declare a form-level object variable of type CTimer that allows receipt of object events.
c. Declare a form-level variable, FlyingImageX, of type Single that holds the current X

position of the flying icon.
d. Declare the form-level constants listed in the following table.

Name Type Value

interval Single 5
FlyingImageStart Single 20
FlyingImageEnd Single 80

e. In the Form_ Load event, create an instance of the Timer object.
f. Add a private function, FlyingImageY, that does not take any parameters and returns the

type Single.
g. In the handler, calculate the current Y position of the flying icon and increment the current

value of the X position, as shown in the following code:

Private Function FlyingImageY() As Single
FlyingImageY = 1 / 36 * (FlyingImageX - 50) * _

(FlyingImageX - 50) + 20
FlyingImageX = FlyingImageX + interval
If FlyingImageX > FlyingImageEnd Then

FlyingImageX = FlyingImageStart
End If

End Sub

h. Add a private Sub routine named FlyImage that calls the FlyingImageY function, and
moves the flying image control based on the current values of the X and Y positions.

i. Add a handler for the TimerEvent event to the Timer control that calls FlyImage.
j. In the StateChanged event, if the state is icConnected, initialize the FlyingImageX variable

to the FlyingImageStart constant, and call the flying image (FlyImage) once. Follow this
with a call to start the timer with an interval of 200.

k. If the event is icResponseCompleted or icError, stop the timer.
l. In the Click event of the Cancel command button, stop the timer.

4. Recompile and test the component.

Exercise 3: Adding Browser Capabilities to the Component
In this exercise, you will extend the FTPDownload component to provide users with the ability to
view the files on a remote computer, and selecting a file for downloading.

You will create the component so that it lists only files in the main FTP folder of the server.
Optionally, you can modify the component to provide the ability to navigate through the folder
structure.

 Create the user interface
1. Add a second form to the component.
2. In the form, add a list box to display the list of available files, and the command buttons OK

and Cancel.
3. Place a copy of the Internet Transfer Control anywhere on the form.

 Implement the frmFTPGetFileName form
1. Declare three events: FileGetCompleted, FileGetCancelled, and FileGetError.
2. Add the public entry subroutine, BeginGetFile, which takes a URL string as a parameter. In

this routine, execute an FTP Directory operation by using the URL parameter.
3. Add a handler for the StateChanged event. If the event is icResponseCompleted, use the file

names in buffered data (see GetChunk) to fill the list box. Names are separated by carriage
return/linefeed pairs and folders are signified by a forward slash (/) in the right-most position
of the name. If the event is icError, raise the error back to the form's client, and unload the
form.

4. Add a handler for the OK command button. The handler should raise the appropriate event,
and pass the selected file name back to the client, and unload the form.

5. Add a handler for the Cancel command button that cancels any executing FTP operations,
raises the appropriate event, and unloads the form.

6. Add a handler to resize the list box as appropriate based on the size of the form.

 Update the class module
1. Declare a private object variable to hold a pointer to an instance of the form

frmFTPGetFileName. Be sure that it allows you to receive events.
2. Declare three events to pass to the component's clients, one for each of the events to be

received from the frmFTPGetFileName form.
3. Add a public subroutine, GetFileName, which receives the URL as a parameter from the

client.
4. Create an instance of the frmFTPGetFileName form, if one does not exist. Ensure that the

URL has the prefix FTP://, and invoke the BeginGetFile routine in the form.
4. Add a handler for each of the events raised by the frmFTPGetFileName form, and pass the

associated class event to the client.

 Modify the client to use the revised component
The final step is to modify the client application to take advantage of the new component
functionality.
1. Update the FTP Download form to include a command button labeled Get File.
2. Add code to enable the Get File command button, only if the URL text box contains user-

entered text.
3. In the handler for the Click event of the New button, invoke the GetFileName method of the

FTPDownload object.
4. Add handlers for the new component events. If the event is GetFileCompleted (or the

equivalent), fill the Source text box with the selected file name.
5. Build and test the component.

Exercise 4: Coding a Chat Session Application
In this exercise, you will create an application that uses the Winsock control to conduct a peer-
to-peer chat session with another application on the same or remote computer.

 Create the Project
1. Create a new Standard EXE project.
2. Add the Winsock component to the project.

3. Add the Winsock control to the form.
4. Modify the form to resemble the following illustration.

5. Save the project as MyChat in the folder \Lab11.

 Implement binding
In the event handler for the binding Click event:
1. Set the RemoteHost property of the Winsock control.
2. Set the RemotePort property of the Winsock control.
3. Use the Bind method to set the local port.

 Implement data sending
1. Add a handler for the Send button's Click event.
2. Use the SendData method of the Winsock control to send data from the appropriate text

box.
3. Clear the text in the text box.

 Process received data
1. Add a handler for the Winsock control's Data_Arrival event.
2. If data exists, receive it from the control's buffer and add it to the beginning of the Received

Data text control. Store only the last 2KB of the existing received data.

 Enable the bind button

1. Set the Enabled property of the Bind button to False.
2. Add a private procedure that enables the Bind button only if the controls on the remote

computer, remote port, and local port contain data.
3. To call the added procedure, add an event handler for the Change event of the remote

computer, remote port, and local port.

 Test the application
1. Compile the application.
2. Run the application in the Visual Basic environment.
3. Set the Remote Computer name to the network name of your computer.
4. Set the Remote Port to 1000.
5. Set the Local Port to 1001.
6. Bind the application.
7. Run a copy of the compiled application on the same computer.
8. Set the Remote Computer name to the network name of your computer.
9. Set the Remote Port to 1001.

10. Set the Local Port to 1000.
11. Bind the application.
12. Send text from each port, and validate that it is properly received.

	Lab 11: Creating Internet-Aware Applications
	Exercise 1: Building the Browser Application
	Exercise 2: Building the FTP Download Component
	Exercise 3: Adding Browser Capabilities to the Component
	Exercise 4: Coding a Chat Session Application

